婷婷色中文在线视频,思思热在线视频日本一区,欧美精品一区三区在线观看,日本色逼影音资源

  • <dfn id="pbiqm"><cite id="pbiqm"></cite></dfn>
        
        

        我要投稿 投訴建議

        《反比例函數(shù)》說課稿

        時間:2021-02-25 10:42:39 說課稿 我要投稿

        關(guān)于《反比例函數(shù)》的說課稿(精選5篇)

          作為一名無私奉獻的老師,有必要進行細致的說課稿準(zhǔn)備工作,借助說課稿可以有效提高教學(xué)效率。那要怎么寫好說課稿呢?下面是小編為大家收集的關(guān)于《反比例函數(shù)》的說課稿(精選5篇),僅供參考,希望能夠幫助到大家。

        關(guān)于《反比例函數(shù)》的說課稿(精選5篇)

          《反比例函數(shù)》說課稿1

          今天我說課的內(nèi)容是華東師大版八年級數(shù)學(xué)下冊第十七章反比例函數(shù)及其圖象。

          一、教材分析:

          本課時的內(nèi)容是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進入函數(shù)范疇,讓學(xué)生進一步理解函數(shù)的內(nèi)涵,并感受到現(xiàn)實世界中存在各種函數(shù)。反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個形象和直觀的認識。

          二、教學(xué)目標(biāo)分析:

          根據(jù)新課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識的同時激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動探索。

          因此把教學(xué)目標(biāo)確定為:

         。ㄒ唬┲R目標(biāo):

         。、使學(xué)生了解反比例函數(shù)的概念

         。、使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式。

          3、使學(xué)生理解反比例函數(shù)的性質(zhì),會畫出它們的圖象,以及根據(jù)圖象指出函數(shù)值隨自變量的增加或減少而變化的情況。

         。、會用待定系數(shù)法確定反比例函數(shù)的解析式。

         。ǘ┠芰δ繕(biāo):

          培養(yǎng)學(xué)生的觀察能力,分析能力,獨立解決問題的能力。

         。ㄈ┑掠繕(biāo):

         。薄⑾?qū)W生滲透數(shù)學(xué)來源于實踐又反過去作用于實踐的觀點。

         。病⑹箤W(xué)生體會事物是有規(guī)律地變化著的觀點。

          (四)美育目標(biāo):

          通過反比例函數(shù)圖象的研究,滲透反映其性質(zhì)的圖象的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)了學(xué)生積極探索知識的能力。

          三、教學(xué)重點,難點。

         。ㄒ唬┙虒W(xué)重點:反比例的概念、圖象、性質(zhì),以及用待定系數(shù)法確定反比例函數(shù)的解析性。

         。ǘ┙虒W(xué)難點:畫反比例函數(shù)的圖象。

          (三)解決方法

         。1)由分組討論,積極思考,分析問題,發(fā)現(xiàn)結(jié)論。

         。2)訓(xùn)練,研究,總結(jié)。

          因為反比例函數(shù)的圖象有兩個分支,而且這兩個分支的變化趨勢又不同,學(xué)生初次接觸,一定會感到困難。為了突出重點、突破難點。我設(shè)計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。

          四、教學(xué)方法:

          初中學(xué)生好動、好奇、好表現(xiàn),抓住學(xué)生特點,積極采用形象生動、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上,青少年好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理特點,一方面要運用直觀生動的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。鑒于教材和初二學(xué)生的年齡特點、心理特征和認知水平,設(shè)想采用問題教學(xué)法和對比教學(xué)法,用層層推進的提問啟發(fā)學(xué)生深入思考,主動探究,主動獲取知識。同時注意與學(xué)生已有知識的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時間。通過教師的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動、多觀察,主動參與到整個教學(xué)活動中來,組織學(xué)生參與“探究。

          《反比例函數(shù)》說課稿2

          各位評委,大家好!

          今天我要說的課題是義務(wù)教育人教版初中八年級十七章第一節(jié)“反比例函數(shù)”。我將從如下步驟進行。

          一、說教材

          1、內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進一步體會函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會函數(shù)的模型思想。因此本節(jié)課重點是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。

          2、學(xué)情分析:對八年級學(xué)生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對新的一次函數(shù)時,還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點是理解和領(lǐng)悟反比例函數(shù)的概念。

          二、說教學(xué)目標(biāo)

          根據(jù)本人對《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:

          1、從現(xiàn)實的情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

          2、經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念。

          三、說教法

          本節(jié)課從知識結(jié)構(gòu)呈現(xiàn)的角度看,為了實現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識→應(yīng)用知識”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識的生成與發(fā)展的過程,也符合學(xué)生的認知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評價、內(nèi)化新知。

          四、說學(xué)法

          我認為學(xué)生將實際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實際出發(fā),通過事例幫助完成定義。

          好學(xué)教育:

          因此,我采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。

          五、說教學(xué)過程

          (一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知

          首先提出問題

          問題1:小明同學(xué)用50元錢買學(xué)習(xí)用品,單價y(元)與數(shù)量x(件)之間的關(guān)系式是什么?

          【設(shè)計意圖及教法說明】

          在課開頭,我認為以一個簡單的數(shù)字問題引入,目的是讓學(xué)生在很快的時間里說出顯而易見的答案,便于增強學(xué)生學(xué)好本課的自信心,使他們能愉快地進行新知的學(xué)習(xí)。

          問題2:我們知道,電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V,

         。1)你能用含有R的代數(shù)式表示I嗎?

          (2)利用寫出的關(guān)系式完成下表。

          R/Ω20406080100

          I/A

          當(dāng)R越來越大時,I怎樣變化?當(dāng)R越來越小呢?

         。3)變量I是R的函數(shù)嗎?為什么?

          【設(shè)計意圖及教法說明】

          因為數(shù)學(xué)來源于生活,并服務(wù)于生活,問題2是一個與物理有關(guān)的數(shù)學(xué)問題,這樣設(shè)計便于使學(xué)生把數(shù)學(xué)知識和物理知識相聯(lián)系,增加學(xué)科的相通性,另外通過本題的學(xué)習(xí),可以讓學(xué)生在情境中體會變量之間的關(guān)系,問題2先讓學(xué)生獨立思考,然后再同桌交流,最后小組討論并匯報,此問題中的(1)(2)問題比較簡單,學(xué)生可以獨立完成,但對于問題(3),老師要給適當(dāng)?shù)闹笇?dǎo)。

          問題2的深化:舞臺燈光可以在很短的時間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實現(xiàn)的?

          【設(shè)計意圖及教法說明】

          學(xué)生可以根據(jù)問題2以及學(xué)過的物理知識來解釋這個問題,這樣既增強學(xué)生學(xué)習(xí)新知的積極性,又達到了解決問題的目的。

          問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?

          【設(shè)計意圖及教法說明】

          好學(xué)教育:

          問題3是一個行程問題,先讓學(xué)生獨立思考、同桌討論,最后列出正確的函數(shù)關(guān)系式,進一步體會函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,為形成反比例函數(shù)的概念打基礎(chǔ)。

          (二)合作探究,獲得新知

          1、出示問題

          想一想,你還能舉出類似的例子嗎?

          【設(shè)計意圖及教法說明】

          這個環(huán)節(jié)目的在于讓學(xué)生親身經(jīng)歷觀察、思考、抽象、概括、補充、完善的過程,讓學(xué)生嘗試用自己的語言說明他們的新發(fā)現(xiàn),培養(yǎng)他們的歸納能力和自主探索與合作交流的良好學(xué)習(xí)習(xí)慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導(dǎo),初步形成反比例函數(shù)的概念。

          2、啟發(fā)學(xué)生建構(gòu)新知

          反比例函數(shù)的定義:一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=k/x(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。

          反比例函數(shù)自變量不能為0!

          反比例函數(shù)的一般形式:y=k/x(k為常數(shù),k≠0)

          反比例函數(shù)的變式形式:k=yx,x=k/y(k為常數(shù),k≠0)

          【設(shè)計意圖及教法說明】

          這種從不同的問題情境中抽象出相同的數(shù)學(xué)模型,再進行抽象得出概念的過程,并非教師所強加,而是學(xué)生通過自己分析走向概念,突破本節(jié)課的難點,使學(xué)生的自豪感和成功感在活動中得以提升,體現(xiàn)類比、轉(zhuǎn)化、建模等數(shù)學(xué)思想,把本節(jié)課推向高潮。

          (三)反饋練習(xí),應(yīng)用新知

          根據(jù)學(xué)生認知的差異性,我設(shè)計了基礎(chǔ)過關(guān)和拓展訓(xùn)練兩類練習(xí)題。

          1、基礎(chǔ)過關(guān)

         。1)下列函數(shù)的表達式中,x表示自變量,那么哪些是反比例函數(shù)?每一個反比例函數(shù)相應(yīng)的k的值是多少?

         、賧=x/5

          ②y=6x—1

         、踶=—3x—2

         、躼y=2

          【設(shè)計意圖及教法說明】

          此題較簡單,以口答的形式進行,設(shè)計的目的是重視基礎(chǔ)知識的教學(xué)和面向全體學(xué)生的教學(xué),并告誡學(xué)生判斷一個函數(shù)是否是反比例函數(shù)不能單從形式上判斷,一定要嚴謹認真,同時也完成了隨堂練習(xí)1。

          好學(xué)教育:

         。2)做一做

         、僖粋矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

         、谀炒逵懈346、2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

          ③y是x的反比例函數(shù),下表給出了x和y的一些值:

          a、寫出這個反比例函數(shù)的表達式;

          b、根據(jù)函數(shù)表達式完成下表。

          表略。

          【設(shè)計意圖及教法說明】

          通過三個實際問題的解決,培養(yǎng)了學(xué)生“發(fā)現(xiàn)問題”、“解決問題”的能力,也達到了學(xué)以致用的目的。

          2、能力拓展

         。1)你能舉個反比例函數(shù)的實例嗎?與同學(xué)進行交流。

          (2)y=5xm是反比例函數(shù),求m的值。

          【設(shè)計意圖及教法說明】

          問題(1)是一個開放性的題,既解決了隨堂練習(xí)2,也培養(yǎng)了學(xué)生的發(fā)散性思維。問題(2)能助于學(xué)生抓住關(guān)鍵點,澄清易錯點(反比例函數(shù)中k≠0),并且加強了新舊知識的聯(lián)系。

          (四)歸納總結(jié),反思提高

          通過這節(jié)課的學(xué)習(xí)你有哪些收獲?還有哪些問題?與同伴進行討論。

         。ㄈ纾耗銓W(xué)到了什么?懂得了什么?你發(fā)現(xiàn)了什么?還有什么困惑?應(yīng)注意什么?還想知道什么?)

          【設(shè)計意圖及教法說明】通過問題式的小結(jié),讓學(xué)生再次歸納、總結(jié)本節(jié)課的重點,彌補教學(xué)中的不足。

          (五)推薦作業(yè),分層落實

          必做題:課本第134頁習(xí)題1、2題。

          選做題:已知y與2x成反比例,且當(dāng)x=2時,y=—1,求:

         。1)y與x的函數(shù)關(guān)系式。

         。2)當(dāng)x=4時,y的值。

         。3)當(dāng)y=4時,x的值。

          好學(xué)教育:

          【設(shè)計意圖及教法說明】作業(yè)以推薦的形式進行,必做題體現(xiàn)了對新課標(biāo)下“學(xué)有價值的數(shù)學(xué)”、“人人能獲得必要的數(shù)學(xué)”的落實,選做題體現(xiàn)了讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。

          【名師點評】

          說課者對本節(jié)課的特點把握較好。無論是教材的分析,還是學(xué)情的了解;無論是重點的把握,還是難點的確定;無論是目標(biāo)的定位,還是時間的分配;無論是資源的選擇,還是教學(xué)的構(gòu)想都能夠圍繞內(nèi)容進行宏觀性說課。

          然而,從這次說課中也不難看出存在的問題:設(shè)想中的不少環(huán)節(jié)均沒有得到體現(xiàn),實際效果離設(shè)計相差不小。也許過于想要達到預(yù)期效果,在準(zhǔn)備過程中多多少少忽略了學(xué)生的想法。在備課過程中,沒有考慮學(xué)生,站在學(xué)生的角度去設(shè)計課堂,這方面做的很不夠。所以教學(xué)設(shè)計雖然體現(xiàn)了精講多練,實時檢測,但還是效果一般。

          另外說課中教師操作技術(shù)不熟練,板書不夠端正,肢體語言的多余動作、類似口頭禪的多余話較多,需要在今后的教學(xué)過程中嚴格要求自己,對方方面面進行改善!

          《反比例函數(shù)》說課稿3

          一、說教學(xué)內(nèi)容

          (一)、本課時的內(nèi)容、地位及作用

          本課內(nèi)容是人教版八年級(下)數(shù)學(xué)第十七章《反比例函數(shù)》的第一課時,是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù)——反比例函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,而又為以后更高層次函數(shù)的學(xué)習(xí),函數(shù)、方程、不等式間的關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù),因此,本節(jié)內(nèi)容有著舉足輕重的地位。

          (二)、本課題的教學(xué)目標(biāo)

          教學(xué)目標(biāo)是教學(xué)的出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認知點,心理特點和本課的特點來制定教學(xué)目標(biāo):

          1、知識目標(biāo)

         。1)通過對實際問題的探究,理解反比例函數(shù)的實際意義。

          (2)體會反比例函數(shù)的不同表示法。

         。3)會判斷反比例函數(shù)。

          2、能力目標(biāo)

         。1)通過三個實際問題,培養(yǎng)學(xué)生勤于思考和分析歸納能力。

         。2)在思考、歸納過程中,發(fā)展學(xué)生的合情說理能力。

         。3)讓學(xué)生會用待定系數(shù)法求反比例函數(shù)關(guān)系式。

          3、情感目標(biāo)

         。1)通過創(chuàng)設(shè)情境讓學(xué)生經(jīng)歷在實際問題中探索數(shù)量關(guān)系的過程,體驗數(shù)學(xué)活動與人類的生活的密切聯(lián)系,養(yǎng)成用數(shù)學(xué)思維方式解決實際問題的習(xí)慣。

         。2)理論聯(lián)系實際,讓學(xué)生有學(xué)有所用的感性認識。

          4、本課題的重點、難點和關(guān)鍵

          重點:反比例函數(shù)的概念

          難點:求反比例函數(shù)的解析式。

          關(guān)鍵:如何由實際問題轉(zhuǎn)化為數(shù)學(xué)模型。

          二、說教學(xué)方法

          本課將采用探究式教學(xué),讓學(xué)生主動去探索,并分層教學(xué)將顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。同時在教學(xué)中將理論聯(lián)系實際,讓學(xué)生用所學(xué)的知識去解決身邊的實際問題。

          由于學(xué)生在前面已學(xué)過“變量之間的關(guān)系”和“一次函數(shù)”的內(nèi)容,對函數(shù)已經(jīng)有了初步的認識。因此,在教這節(jié)課時,要注意和一次函數(shù),尤其是正比例函數(shù)一反比例的類比。引導(dǎo)學(xué)生從函數(shù)的意義、自變量的取值范圍等方面辨明相應(yīng)的差別,在學(xué)生探索過程中,讓學(xué)生體會到在探索的途徑和方法上與一次函數(shù)相似。

          對于所設(shè)置的三個問題為學(xué)生熟悉,盡量貼近學(xué)生生活,或者進入學(xué)生生活的圈子里,讓學(xué)生感受到親切、自然,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生思考問題的積極主動性和解決問題的能力,從而培養(yǎng)對數(shù)學(xué)學(xué)科的濃厚興趣,使部分學(xué)生由不愛學(xué)變得愛學(xué)。讓學(xué)生真正體會到:生活處處皆數(shù)學(xué),生活處處有函數(shù)。

          三、說學(xué)法指導(dǎo)

          對于上函數(shù)這一課有相當(dāng)一部分學(xué)生注意力不能集中。針對這種情況,從學(xué)生身邊的生活和已有的知識出發(fā)創(chuàng)設(shè)情境,目的是讓學(xué)生感受到生活中處處有數(shù)學(xué),激發(fā)學(xué)生對數(shù)學(xué)的興趣和愿望,同時也為抽象反比例函數(shù)概念做好鋪墊。讓學(xué)生自己舉例,討論總結(jié)規(guī)律,抽象概念,便于學(xué)生理解和掌握反比例函數(shù)的概念,同時,培養(yǎng)和提高了學(xué)生的總結(jié)歸納能力和抽象能力。

          教師要善于捕捉學(xué)生的反饋信息,并能立即反饋給學(xué)生,矯正學(xué)生的學(xué)法和知識錯誤。力求體現(xiàn)以學(xué)生為主體,教師為主導(dǎo)的原則,在輕松愉快的氛圍中,順利地“消化”本節(jié)課的內(nèi)容。同時,讓學(xué)生體會到“理論來自于實踐,而理論又反過來指導(dǎo)實踐”的哲學(xué)思想。從而培養(yǎng)和提高學(xué)生分析問題和解決問題的能力。

          四、說教學(xué)過程

          復(fù)習(xí)引入:

          師生共同回憶前一階段所學(xué)知識,再次強調(diào)函數(shù)和重要性,同時啟開新的課題——反比例函數(shù)(教師板書)。

          (一)創(chuàng)設(shè)情景,激發(fā)熱情

          事實上,數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認識并掌握數(shù)學(xué)。

          因而用三個最貼近學(xué)生生活實例引出反比例函數(shù)的概念;從而讓學(xué)生感受數(shù)學(xué)與生活的緊密聯(lián)系。

          多媒體課件展示:

         。▎栴}1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化。

          師生共同探究,時間的變化是由速度所引起的,設(shè)時間為T,速度為V,然后教師總結(jié):路程等于速度與時間的乘積

          vt=1463即v=1463/t

         。▎栴}2)某住宅小區(qū)要種植一個面積為1000平方米的矩形草坪。草坪的長y(單位:m)隨寬x(單位:m)的變化而變化、

          師生共同探究,教師總結(jié):矩形的面積等于長乘于寬

          xy=1000即y=1000/x

          (問題3)已知北京市的總面積為16800平方千米,人均占有的土地面積s(單位:平方千米/人)隨全市總?cè)丝趎(單位:人)的變化而變化、

          師生共同得出:s=16800/n

          (二)觀察歸納——形成概念

          由實例v=1463/t,y=1000/x,s=16800/n三個式子教師引導(dǎo)學(xué)生概括總結(jié)出本課新的知識點:

          一般地,形如Y=K/X或XY=K(K是常數(shù),K不為0)的函數(shù)叫做反比例函數(shù)。

          在此教師對該函數(shù)做些說明。

          (三)討論研究——深化概念

          學(xué)生通過對例1的觀察、討論、交流后更進一步理解和掌握反比例函數(shù)的概念

          多媒體課件展示、

          例1、已知y是x的反比例函數(shù),當(dāng)x=2時,y=6。

         。1)、寫出y與x之間的函數(shù)解析式。

         。2)、求當(dāng)x=4時y的值、

          五、即時訓(xùn)練——鞏固新知

          為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設(shè)計了一組即時訓(xùn)練題,把課本的習(xí)題熔入即時訓(xùn)練題中,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。

          多媒體課件展示

         。柟叹毩(xí):)

         。ǹ诖穑┫铝泻瘮(shù)關(guān)系中,X,Y均表示自變量,那么哪些是反比例函數(shù)?每一個反比例函數(shù)的K的值是多少?

          Y=5/XY=0、4/XY=X/2XY=2

          Y=—1/X(給學(xué)困生發(fā)表見解的機會,激發(fā)他們的學(xué)習(xí)興趣)

          學(xué)生回答后教師給出正確答案。

          (1)突出重點,提高能力

          為了突出重點,特意把書中的練習(xí)題設(shè)計為例題的形式,以提高學(xué)生的分析問題,解決問題的能力,再給出一道類似的題目以加強鞏固

          (2)總結(jié)反思——提高認識

          由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:

          A、反比例函數(shù)的意義;

          B、反比例函數(shù)的判別;

          C、反比例函數(shù)解析式的求法。

          讓學(xué)生通過知識性內(nèi)容的小結(jié),把課堂教學(xué)傳授的知識盡快化為學(xué)生的知識;通過數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標(biāo)。

          (3)任務(wù)后延——自主探究

          學(xué)生經(jīng)過以上幾個環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了探究數(shù)列規(guī)律的一般方法,有待進一步提高認知水平,因此我針對學(xué)生素質(zhì)的差異設(shè)計了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。

          《反比例函數(shù)》說課稿4

          一、說教學(xué)設(shè)計意圖

          首先由學(xué)生嘗試舉出實際生活中某兩個量出租反比例關(guān)系的例子,自然地引入利用所學(xué)的反比例函數(shù)來解決實際問題,在數(shù)學(xué)課上引用一個用“杠桿規(guī)律”的實際問題,一下子抓住學(xué)生的好奇心理。激發(fā)了他們的學(xué)習(xí)興趣。利用了公元前3世紀古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定律”中力與力臂兩個量的反比關(guān)系,將他們運用到用數(shù)學(xué)來解決問題,激發(fā)學(xué)生求知熱情。也培養(yǎng)他們科學(xué)探索精神。

          實際問題向數(shù)學(xué)問題他轉(zhuǎn)化是解決問題的關(guān)鍵。教師有理有據(jù)地引學(xué)生通過反比例函數(shù)模型實現(xiàn)這一目的。讓學(xué)生體會其中的轉(zhuǎn)化思想,逐步掌握轉(zhuǎn)化的方法。函數(shù)模型沒有變,但兩個量的角色發(fā)生變化,體會變與不變的思想。通過這種方法的學(xué)習(xí),讓學(xué)生學(xué)會歸納、總結(jié)所學(xué)的知識。使學(xué)生初步形成運用反比例函數(shù)解決實際問題的意識打好基礎(chǔ)。

          通過以學(xué)生身邊熟悉的`星海湖水利工程為實際問題創(chuàng)設(shè)練習(xí)題,讓學(xué)生進一步加深對反比例函數(shù)的運用和理解,更深層次形成反比例函數(shù)模型來解決實際問題的意識,鞏固和提高所學(xué)知識。給學(xué)生足夠的時間和空間,為他們創(chuàng)造展示能力和應(yīng)用所學(xué)知識的機會。

          最后,通過小結(jié),使學(xué)生把所學(xué)知識進一步內(nèi)化、系統(tǒng)化。

          二、說內(nèi)容

          本章的反比例函數(shù)的內(nèi)容屬于《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)——數(shù)學(xué)》是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進入函數(shù)范疇。反比例函數(shù)是基本的函數(shù)之一,本章共分為兩節(jié),第17—2節(jié)的內(nèi)容是如何用反比例函數(shù)解決實際問題或如何用反比例函數(shù)解釋現(xiàn)實世界中的一些現(xiàn)象。本節(jié)課主要涉及在使用杠桿時,如果阻力和阻力臂不變,則動力是動力臂的反比例函數(shù)。

          三、說目標(biāo)

          本節(jié)課的目標(biāo)是通過“杠桿原理”等實際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點來解決一些實際問題。教學(xué)重點:運用反比例函數(shù)解釋生活中的一些規(guī)律,解決一些實際問題。教學(xué)難點:把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決。

          四、說教法

          本節(jié)課是實際問題與反比例函數(shù)的學(xué)習(xí),我采用的教學(xué)方法是,要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,并且精心引導(dǎo)學(xué)生通過反比例函數(shù)模型來實現(xiàn)解決實際問題。在這引導(dǎo)過程中讓學(xué)生體會老師是如何將實際問題向數(shù)學(xué)問題轉(zhuǎn)化的。

          五、說學(xué)情

          從學(xué)生初步接觸函數(shù)所蘊含的“變化與對應(yīng)”思想,至今已經(jīng)半年有余,學(xué)生對與函數(shù)相關(guān)的概念不可避免會有些遺忘,再加上我們的學(xué)生大多數(shù)都是外來務(wù)工子女,好的習(xí)慣沒有養(yǎng)成,所以基礎(chǔ)知識差。特別是分析能力和計算能力。在進行活動中可能達不到預(yù)期的效果。

          六、說教學(xué)安排

          活動一、創(chuàng)設(shè)情境,引入新課目的老師提出生活中遇到的問題,請學(xué)生幫助解決,激發(fā)學(xué)生的興趣。

          活動二、分析解決問題目的與學(xué)生共同分析實際問題中的變量關(guān)系,引導(dǎo)學(xué)生利用反比例函數(shù)解決問題。

          活動三、從函數(shù)的觀點進一步激發(fā)學(xué)生學(xué)習(xí)興趣目的是引導(dǎo)學(xué)生利用“杠桿規(guī)律”培養(yǎng)科學(xué)探索精神。

          活動四、鞏固練習(xí)目的通過課堂練習(xí),提高學(xué)生運用反比例函數(shù)解決實際問題能力。

          活動五、課堂小結(jié)布置作業(yè)目的歸納總結(jié)所學(xué)的知識,體會利用函數(shù)的觀點解決實際問題。

          《反比例函數(shù)》說課稿5

          一、數(shù)學(xué)本質(zhì)與教學(xué)目標(biāo)定位

          《實際問題與反比例函數(shù)(第三課時)》是新人教版八年級下冊第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應(yīng)用課。體現(xiàn)反比例函數(shù)是解決實際問題有效的數(shù)學(xué)模型,經(jīng)歷“找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實際問題“的過程。

          本節(jié)課的教學(xué)目標(biāo)分以下三個方面:

          1、知識與技能目標(biāo):

         。1)通過對“杠桿原理”等實際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點來解決一些實際問題;

         。2)通過對實際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運用已學(xué)過的反比例函數(shù)知識加以解決,體會數(shù)學(xué)建模思想和學(xué)以致用的數(shù)學(xué)理念。

          2、能力訓(xùn)練目標(biāo)

          分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進一步運用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊涵的道理。

          3、情感、態(tài)度與價值觀目標(biāo):

         。1)利用函數(shù)探索古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學(xué)生的求知欲望得到激發(fā),再通過自己所學(xué)知識解決了身邊的問題,大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

         。2)訓(xùn)練學(xué)生能把思考的結(jié)果用語言很好地表達出來,同時要讓學(xué)生很好地交流和合作、

          二、學(xué)習(xí)內(nèi)容的基礎(chǔ)以及其作用

          在17、1學(xué)習(xí)了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實際問題與反比例函數(shù)》這一節(jié)重點介紹反比例函數(shù)在現(xiàn)實生活中的廣泛性,以及如何應(yīng)用反比例函數(shù)的知識解決現(xiàn)實生活中的實際問題。

          本節(jié)課的探究的例題和練習(xí)題都是現(xiàn)實生活中的常見問題,反映了數(shù)學(xué)與實際的關(guān)系,即數(shù)學(xué)理論來源于實際又發(fā)過來服務(wù)實際,這樣有助于提高學(xué)生把抽象的數(shù)學(xué)概念應(yīng)用于實際問題的能力。在數(shù)學(xué)課上涉及了物理學(xué)力學(xué)的實際問題,運用到古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定理”,其本質(zhì)體現(xiàn)的是力與力臂兩個量的發(fā)比例關(guān)系,最后落實到運用數(shù)學(xué)來解決。通過學(xué)習(xí),讓學(xué)生進一步加深對反比例函數(shù)的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學(xué)知識,鼓勵學(xué)生將所學(xué)知識應(yīng)用到生活中去。

          三、教學(xué)診斷分析

          本節(jié)課容易了解的地方是:杠桿是我們在生活中常常遇到的物理模型,利用杠桿定理容易建立函數(shù)關(guān)系式。

          而我認為本節(jié)課有兩個問題學(xué)生比較難理解:

         。1)是注意在實際問題中函數(shù)自變量的取值范圍,用數(shù)學(xué)知識去解決實際問題。在講課時注意提醒學(xué)生關(guān)注實際問題的意義;

          (2)從函數(shù)的角度深層次挖掘變量的關(guān)系,在這一過程中學(xué)生逐漸建立運用運動變化的觀點解釋一些現(xiàn)象,實現(xiàn)從靜到動的轉(zhuǎn)變。授課時教師要按照學(xué)生的認知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題。學(xué)生可以在我設(shè)計的問題的提示下來進行探究,學(xué)生若能發(fā)現(xiàn)其他的規(guī)律,教師應(yīng)表揚,并讓同學(xué)自己來講解。

          四、教法特點以及預(yù)期效果分析

          教法特點:

          1、在研究性學(xué)習(xí)中應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動、教學(xué)過程中,教師不應(yīng)把現(xiàn)成的結(jié)論和方法直接告訴學(xué)生,應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動,激發(fā)學(xué)生的探索精神和求知欲望、同時,又要營造一種寬松、和諧、積極民主的學(xué)習(xí)氛圍,使每位學(xué)生都成為問題的探索者、研究中的發(fā)現(xiàn)者、

          2、注重觀察能力的培養(yǎng)、教學(xué)過程中應(yīng)注重對學(xué)生觀察的目的性、敏銳性和思辨性結(jié)合的培養(yǎng),優(yōu)化觀察的對象,透過現(xiàn)象看本質(zhì),迅速從繁雜無序問題中捕捉最有價值的信息、此能力是發(fā)現(xiàn)問題和解決問題的關(guān)鍵、

          3、合作意識和合作能力的培養(yǎng)、合作意識和合作能力是現(xiàn)代人才必備的基本素質(zhì)之一、現(xiàn)代社會中,幾乎任何一項工作都要許多人通力合作才能完成(如上述眾多結(jié)論的獲得),是否具有協(xié)作精神,能否與他人合作,已成為決定一個人能否成功的重要因素、教師要創(chuàng)設(shè)一切為學(xué)生合作的情境和機會,使學(xué)生學(xué)會與他人合作、

          4、數(shù)學(xué)應(yīng)用意識的培養(yǎng)、作為數(shù)學(xué)教師,我們的主要任務(wù)是,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光去觀察和分析實際問題,提高對數(shù)學(xué)的興趣,增強學(xué)好數(shù)學(xué)的信心,達到培養(yǎng)創(chuàng)新精神和能力的目的、以上問題的解決過程,實際上就是要求學(xué)生作為主體去面對解決的問題,主動去探索、討論,尋找問題解決的途徑,用數(shù)學(xué)的方法和技術(shù)來處理實際模型,最終得出結(jié)論、

          5、數(shù)學(xué)審美能力的培養(yǎng)、數(shù)學(xué)是“真”的典范,同時又是“美”的科學(xué)、教師應(yīng)引導(dǎo)學(xué)生去發(fā)現(xiàn)美、體驗美、感受美和創(chuàng)造美,這樣能夠使學(xué)生的思維得到鍛煉、智力得到開發(fā)、情操得到陶冶和創(chuàng)新能力得到提高、它是鼓舞學(xué)生奮發(fā)向上,引導(dǎo)學(xué)生積極創(chuàng)造的重要因素、

          預(yù)期效果分析:

          (1)教學(xué)難點的突破

          本節(jié)的難點在于“把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決”,課前預(yù)設(shè)通過“師生共分析——分析錯處——再獨立解題”的三個環(huán)節(jié),以達到學(xué)生逐步掌握轉(zhuǎn)化的方法。

         。2)教學(xué)重點的落實

          在探索實際問題與反比例函數(shù)時,教學(xué)活動設(shè)計了學(xué)生通過“現(xiàn)觀察——后歸納——再比較——后小結(jié)”的循環(huán)上升的思維進程進行引導(dǎo),在實際教學(xué)活動中學(xué)生通過自主探索能發(fā)現(xiàn)并歸納,使學(xué)生所學(xué)知識進一步內(nèi)化和系統(tǒng)化。

          總之,學(xué)生是具有學(xué)習(xí)的自主性、探索性、協(xié)作性和實踐性、本節(jié)課是學(xué)生對科學(xué)探索與研究的初步嘗試,但是它對學(xué)生今后的學(xué)習(xí)和15、1分式的意義說課稿

        【關(guān)于《反比例函數(shù)》的說課稿(精選5篇)】相關(guān)文章:

        關(guān)于反比例的近義詞和反義詞08-23

        關(guān)于《村居》的說課稿08-17

        有關(guān)于《巨人的花園》說課稿(精選5篇)10-16

        關(guān)于《談生命》的說課稿03-07

        關(guān)于《謹》說課稿12-26

        關(guān)于巨人的花園說課稿范文10-16

        郭沫若《天上的街市》說課稿精選05-24

        關(guān)于《認識東南》說課稿12-02

        關(guān)于《詹天佑》說課稿09-30

        關(guān)于《搭石》說課稿09-24